
Dr. Louis J. Wicker
Meteorologist

NOAA National Severe Storms Laboratory
Adjunct Associate Professor

Univ of Oklahoma School of Meteorology
Louis.Wicker@noaa.gov

http://www.nssl.noaa.gov/users/lwicker/public_html

Improving Scientific
Productivity using Python:

An Example from an
Ensemble Data Assimilation

System in Meteorology

NOAA/National Severe Storms Lab

Long ago in a decade far far
away from here...

Researchers / Students in 1985 had to know:
How to program in Fortran with serial algorithms (maybe C if you were
TRUELY geek...)

How to use a word processor
How to run a job on a big computer (remember Job Control Lang...eeh!)

Researchers / Students in 2005 need to know:
2-5 languages (F95, C++, CSH, Python, MatLab, etc...)

parallel programming (distributed parallelism, OMP does not count!)

3 & 4D visualization

web programming

grid computing, data base management, etc, etc....

No problem, right?

NOAA/National Severe Storms Lab

Compiled Languages
As in ... F77, F95, F2000, C++, C, Ada, etc ...

Generates the fastest executing code

Are “traditional” development languages, they are the
ones taught, the ones legacy codes are written in

Development cycle:

write/compile/link/run ...

debug/compile/link/run ... repeat ...

Access to Unix filesystem, files, URL’s awkward..

Some compiled languages (F77, C ?) do not promote
the application of modern software practices like
OOP, modular code, etc.

NOAA/National Severe Storms Lab

Interpreted (Scripting)
LanguagesAs in ...

Csh, Perl, Python, Ruby, Tcl, BASIC, etc.
Java is “in-between”
also IDL, Matlab, Mathematica, Maple, NCL ...

Development cycle is
write/run ...
debug/run ...
debug/run ... etc.

Built-in access to Unix, Web, etc.
These languages tend to promote the development of good
software through code reuse, built-in high-level constructs
and OOP.

NOAA/National Severe Storms Lab

Advantages of Using
Interpreted Languages

Programs are generally written at a higher level

Data structures are dynamic - do not have to be specified a
a priori!

OOP paradigm promotes code reuse and simple top level code

Modules can include both functions and main drivers => easier
development & testing

Development cycle includes testing code snippets that you
are trying to include in the modules in interpreter

eliminates more bugs up front

permits testing of new code ideas “inline”

Result: smaller code, fewer bugs, faster development

NOAA/National Severe Storms Lab

Example: Read ascii
data from file...

Page 1 of 1untitled text

Printed: Tuesday, October 3, 2006 11:37:01 AM

 964.0000 305.29 15.713!

 0.0000 305.29 15.713 -3.0730 8.4429!

 127.17 304.52 15.137 -4.4020 12.094!

 359.00 304.42 14.117 -5.1683 19.288!

 593.61 304.35 13.016 -1.8411 19.884!

 833.33 304.34 12.268 2.2744 19.839!

 1080.0 304.55 10.787 5.1683 19.288!

 1331.5 305.26 8.8552 6.9083 18.110

Input File

Fortran Code Python CodePage 1 of 1untitled text 2

Printed: Tuesday, October 3, 2006 12:48:20 PM

integer, parameter :: nmax = 10000!

integer n, ios!

real p0, t0, q0!

real, dimension(nmax) :: q, t, q, u, v!

open(10,file='data.ascii',form='formatted')!

read(10,*) p0, t0, q0!

do n = 1,nmax!

! read(10,*,iostat=ios) z(n), t(n), q(n), u(n), v(n)!

! if(ios == -1) exit!

enddo!

close(10)!

Page 1 of 1untitled text 3

Printed: Tuesday, October 3, 2006 12:49:36 PM

f = open("data.ascii", "r")!

p0, t0, q0 = f.readline()!

d = f.read().split()!

z, t, q, u, v = d[0::5],d[1::5],d[2::5],d[3::5],d[4::5]!

f.close()

d = [float(x) for x in f.read().split()]

NOAA/National Severe Storms Lab

Why Python?
Python uses natural syntax - most Fortran/C programmers
would understand code structure upon reading it - to me it
looks like a combo of Fortran + CSH.....

Includes OOP, dynamic typing, regular expressions, etc.

Strong community support of numerical operations (Numeric,
Numpy, Numarray, SciPy)

Interface software to combine Python with Fortran / C / C+
+ exists (F2PY & SWIG)

netCDF & HDF5 interfaces exist (HDF5 => PyTABLES!)

Visualization interfaces (VTK, Matlibplot, NCAR graphics)

Large user community - commercial development, etc.

NOAA/National Severe Storms Lab

Some Python Things
(to know...)

Our DA group at NSSL uses Python to

wrap NCAR command language scripts for command line and GUI access

create command line interfaces to our Fortran NAMELIST FILES: (pyRun)

create machine independent “Makefiles”: pyMake

Python has many add-on packages

PyNGL (Python interface to NCAR graphics) (also PyNCL)

Scientific Python (not SciPy) - netCDF interface

PyTables - interface to HDf5

Numerical Python (linear solvers, stats, matrix computation) - MatLab-like replacement

PyVtk - interface to VTK libraries for 3D viz

About anything you could want, really...

NOAA/National Severe Storms Lab

PyMake combining Python and Make
#==
main script

Figure out which machine we are on

machine = platform.machine() # i386, ppc, etc.
system = platform.system() # Darwin, Linux,
compiler = ""

print
print "Compiler python script for COMMAS"
print
print "Machine is ", machine
print "System is ", system
print
#--
#
Mac Intel ifort Compiler definitions

if machine == 'i386' and system == 'Darwin' and compiler != "g95":

! F90 = "'ifort'"
! F77 = "'ifort'"!
#---
#
Mac Intel G95 Compiler definitions

if machine == 'i386' and system == 'Darwin' and compiler == "g95":

! F90 = "'g95'"
! F77 = "'g95'"
#---
#
Mac PPC Compiler definitions

if machine == 'Power Macintosh' and system == 'Darwin':

! F90 = "'xlf90 -qsuffix=f=f90 -qsuffix=cpp=F90'"
! F77 = "'xlf -qfixed=132'"
#---
#
SGI Altix Compiler definitions

if machine == 'ia64' and system == 'Linux':
! F90 = "'ifort'"
! F77 = "'ifort'"!

#---
Makefile Macros....
! FCOMPILE = 'F90=' + F90 + ' F77=' + F77 + ' FPP=' + FPP + ' CC=' + CC + ' FIXED=' + FIXED + ' FREE=' + FREE \
! + ' OPT_F90=' + OPT_F90 + ' OPT_F77=' + OPT_F77 + ' SMP=' + SMP + ' PAR=' + ' CFLAGS=' + CFLAGS \
! + ' LDR=' + LDR + ' LOPT=' + LOPT + ' LIB=' + LIB \
! + ' NETCDF_LIB=' + NETCDF_LIB + ' NETCDF_INC=' + NETCDF_INC \
! + ' AR=' + AR + ' RANLIB=' + RANLIB

#--
COMPILE DICTIONARY
name location target compile options
#--
MAKE_DICT= {'fort_lib': ['./Model', 'fortran', FCOMPILE], \
 'commas': ['./Model', 'commas' , FCOMPILE], \
 'commas_init': ['./Model', 'commas_init', FCOMPILE], \
 'com2v5d': ['./Model', 'com2v5d', FCOMPILE], \
 'filter': ['./Filter','enkf', FCOMPILE]}
#--
Process command lines and compile code

if sys.argv[1] == 'all':
! targets = MAKE_DICT.keys()
! for key in targets:
! ! tmp = MAKE_DICT[key]
! ! os.system("rm " + tmp[1])
! ! ret = makeit(current_dir,tmp[0],tmp[1],tmp[2])

if MAKE_DICT.has_key(sys.argv[1]):
! tmp = MAKE_DICT[sys.argv[1]]
! os.system("rm " + tmp[1])
! ret = makeit(current_dir,tmp[0],tmp[1],tmp[2])

if sys.argv[1] == 'help':

! print "=="
! print " Python Compile Script for PyEnCOMMAS "
! print
! print " pymake all --> To create a running version of PyEnCOMMAS: "
! print " this creates the commas solver library and python interface routines "
! print " so one can run the scripts. "
! print
! print " pymake com2v5d --> To create the COMMAS to Vis5D conversion program"
! print
! print " pymake clean --> cleans up the directory, removing object and module files "
! print
! print "=="

NOAA/National Severe Storms Lab

PyRun: Controling fortran namelists

#!/usr/bin/env python
#
This is a python script to set up and run COMMAS06
type "pyrun -h" or pyrun --help for options
The main python program is at the bottom of the file
Python module imports

from optparse import OptionParser
import os, string
#
#
These are DEFAULT RUN_PREFIX, RUN_MEMBER, RUN_START, and RUN_STOP definitions
They can be changed on the command line (type "pyrun -h" for more information)
NOTE: These variables need to be defined as STRINGS (put things in quotes!)

RUN_PREFIX = "test2d"
RUN_MEMBER = "0"
RUN_START = "-1"
RUN_STOP = "7200"
RUN_DT = "10"
RUN_MICRO = "LFO"
RUN_SOUND = './may20.sound'

Create the input text stream used to create the namelist files

namelist_text = """
!==
!========== ==========
!========== ==========
!========== NAMELIST: 3D.RUN
!========== ==========
!========== ==========
!==
&run
 member = RUN_MEMBER, ! member number name (number from 000 to 999)
 start = RUN_START, ! start : -1 to start from time 0, otherwise must be a
 ! history time in the netcdf file
 stop = RUN_STOP, ! stop : time (seconds) of end of simulation
 ugrid = 10.0, ! ugrid : grid motion in X direction
 vgrid = 0.0, ! vgrid : grid motion in Y direction
 tprint = 30, ! tprint : interval (seconds) for max/min print out
 thistory = 300, ! thistory : interval (seconds) for history/restart dumps,
 ! the model is restarted from these history dumps
 tvis5d = 60, ! tvis5d : interval (seconds) for vis5d output
/

.....

.....

300 more lines!!

Run deck is prefix + "run" suffix

 RUN_FILE = prefix + ".run"

 namelist_text = namelist_text.replace("RUN_PREFIX", prefix)
 namelist_text = namelist_text.replace("RUN_MEMBER", number)
 .

 .
 .

 namelist_text = namelist_text.replace("RUN_MICRO", micro)
 namelist_text = namelist_text.replace("RUN_SOUND", sound_file)

 namelist_file = open(RUN_FILE,"w")
 namelist_file.write(namelist_text)
 namelist_file.close()

 print "INPUT OPTIONS:"
 print "-------------"
 print "Prefix: ", prefix
 print "Member number: ", number
 print "Microphysics scheme: ", micro
 print "Start Time: ", start
 print "Stop Time: ", stop
 print "Time Step: ", dt
 print "Input Deck File: ", RUN_FILE
 print "Output Run File: ", output

 if options.run:
 print "COMMAS model will be automatically started"
 else:
 print "NO MODEL RUN REQUESTED"

 if options.delete:
 print "Input deck will be removed after model run is completed"

 if options.delete and options.run:
 print "Starting COMMAS run and will delete run file after completion"
 os.system("commas " + RUN_FILE + " >> " + output + " 2>&1 ; rm " + RUN_FILE + " &")

 elif options.run:
 print "Starting COMMAS run "
 CMD = "commas " + RUN_FILE + " >> " + output + " 2>&1 &"
 print CMD
 os.system(CMD)

#---
Main program for testing...
#
if __name__ == "__main__":
 print "PYRUN: Sets up model input deck and also can run COMMAS06. Type 'pyrun -h' / 'pyrun --help' for more info"
 print
 usage = "usage: %prog [options] arg"
 parser = OptionParser(usage)
 parser.add_option("-p", "--prefix", dest="prefix", type="string", help="Prefix of run, e.g., 'wk01'")
 parser.add_option("-n", "--number", dest="number", type="string", help="Member # of the run, e.g., 0, 1, 2, ..., 11, etc.")
 parser.add_option("-b", "--begin", dest="start", type="string", help="Start time of the run in seconds from initial time, 0, 1200, etc.\
 A start time of -1 initializes the run")

NOAA/National Severe Storms Lab

SV_GUI.py Interface:
Python + NCL

NOAA/National Severe Storms Lab

Numerical Weather Prediction
in 2006

Numerical weather prediction is the process where the
atmosphere fluid equations (a set of PDE’s) are discretized
on the globe, observations are used to initialize the
dependent variables, and the discrete equations are then
integrated forward in time to create a weather forecast

Problem is inherently probabilistic - especially at small
scales

Exponential growth in computational power now permit
probabilistic approaches to NWP problem

NOAA/National Severe Storms Lab

Numerical Weather Prediction
30 years ago: forecast was a single model run whose grid
could only resolve large scale storm features (e.g. the Low’s)

Next 20 years was spent increasing resolution and improving
physical processes in a single forecast mode.

Today instead of a single forecast, an ensemble of weather
forecasts (10-100 simulations) are now used to produce a
forecast that explicitly estimates forecast uncertainty.

The ensemble information is also useful for incorporating
observations: Data assimilation of observations via a
technique known as the Ensemble Kalman Filter (EnKF).

Now we are talking about predicting individual convective
storms (like the OKC 3 May tornadic storm...)

NOAA/National Severe Storms Lab

Storm-scale Numerical Weather
Prediction?

SINGLE (1) NWP Grid Point (Δx ~ 200 km)
7 vertical levels

NWP Grid (Δx ~ 4 km)
70 vertical levels

1975

A factor of ~25,000 in resolution (3D), and a ~106 increase in CPU cost
One hour of NWP model computer time today would require > 1 year to run on the 1975 computer!

DFW

2005

Beat
Texas! Beat

Texas!

NOAA/National Severe Storms Lab

Weather prediction model (the forecast model) the predicts the weather on
scales of ~ 1 km.

Radar observations: Doppler velocity and reflectivity from the WSR-88D

Data Assimilation: An algorithm whereby 4D observations are used to create the
initial conditions for a geophysical forecast model.

Ensemble Kalman filter: an DA algorithm that takes as input an ensemble of
3D forecasted weather fields (wind, pressure, rain, etc.) and the radar
observations such that at the end, the model data match the radar data in a
least squares sense.

Instead of 1 model forecast to initialize: now need 100’s initializations

Instead of running 1 forecast: now run 100’s forecasts

Instead of 1 model forecast output files: now have 100’s

Instead of restarting the model every hour: now need to do it every minute

Instead of plotting 50 forecast fields: now have 1000’s of fields to plot

Storm-scale NWP: What do you need?

What do you now have to deal with?

NOAA/National Severe Storms Lab

How to manage THIS?

Use Python to manage via an OOP + database approach

Python classes are created to help set up the files,
initialize, and start and stop the Fortran executables.

Python dictionaries are used to manage the parameter
lists that are needed for the observational data files and
parameters, the model runs, and the EnKF algorithm.

Pickling of Python objects is used to create persistence.

Python “Glues” everything together and makes this
manageable.

NOAA/National Severe Storms Lab

Python is the “Glue”
Create Python classes to “hide” all the internal gobbly-gook...

Three class objects

pyDART: observation class

pyEnKF: Kalman filter class

pyEnsemble: forecast model class

Each python class has its own data and methods for
executing operations needed

Run forecast model, dump observations for filter, create input
files and namelists for Fortran codes, etc.

NOAA/National Severe Storms Lab

run_ENKF.py Python Script Outline

reads user command input parameters: ensemble file name, etc.
reads parameters for model ensemble: file prefix name, # of members,

date and time of integration, etc.
reads parameters for Kalman filter: what variables to be adjusted by the

assimilation, observation bias and variance, etc.
read observation files: Determine what the integration blocks based on

the availability of the radar observations e.g. Time = [22:08-22:10,
22:10-22:16, 22:16-22:17]

For each block in Time:
what time is it?
are there observations?
Yes? THEN

Create observation header file for enkf
Call Kalman filter

No? THEN
for each member in ensemble, create NAMELIST file for params
run model and integrate each member to next time in TIME

NOAA/National Severe Storms Lab

Examples of our code....

Page 1 of 6run_DARTosse.py

Printed: Tuesday, October 3, 2006 7:16:25 PM

#!/usr/bin/env python!

#!

System imports!

#!

import os!

import time as cpu!

import sys, glob!

import string!

import Numeric!

from optparse import OptionParser!

#!

Add search path to find out Python modules!

#!

sys.path.append("./Python")!

#!

Import local modules!

#!

import clock!

import param!

import util!

from ensemble import *!

!

#---!

#!

Command line arguments!

!

usage = "usage: %prog [options] arg"!

parser = OptionParser(usage)!

parser.add_option("-f", "--file", dest="file", type="string", help="Name of run and/or

ensemble object file (e.g., may20.exp")!

!

(options, args) = parser.parse_args()!

!

if options.file == None:!

 print!

 parser.print_help()!

 print!

 print "ERROR: configuration file not defined...EXITING"!

 print!

 sys.exit(0)!

!

#---!

!

Simulation run parameters !

!

experiment = ReadEnsemble(options.file)!

!

run_dict = param.read(experiment.config_file, 'run_ensemble')!

init_dict = param.read(experiment.config_file, 'init_background_dict')!

enkf_dict = param.read(experiment.config_file, 'enkf_dict')!

!

trestart = run_dict["trestart"]!

thistory = run_dict["thistory"]!

tvis5d = run_dict["tvis5d"]!

tprint = run_dict["tprint"]!

ugrid = run_dict["ugrid"]!

vgrid = run_dict["vgrid"]!

Process command
line arguments

Remind user how to
run code

Read in python
pickle object with

ensemble info

Extract needed
parameters out of

run dictionary

NOAA/National Severe Storms Lab

Time
Integration

Loop

Page 1 of 1untitled text

Printed: Tuesday, October 3, 2006 7:26:18 PM

START time loop!

while time < stop:! ! ! # Find the next observation time that is >= the current time.!

!

 if ObTimeSec[TimeIndex] > time:!

 td = ObTimeSec[TimeIndex] - time!

 NextTime = int(round(time + dt*round(td / dt)))!

 print 'RUN_DARTosse: TimeIndex = ', TimeIndex!

 print 'RUN_DARTosse: ObTimeSec = ', ObTimeSec[TimeIndex]!

 print 'RUN_DARTosse: Time = ', time!

 print 'RUN_DARTosse: NextTime = ', NextTime!

!

Integrate ensemble members to next observation time.!

!

 print 'RUN_DARTosse: CALLING ThreadTimeStep at time ',NextTime!

!

 if run_model:!

experiment.SetRunParams(time,NextTime,trestart,thistory,tvis5d,tprint,ugrid,vgrid)! !

 experiment.ThreadTimeStep(nthreads=nthreads)!

!

 print 'RUN_DARTosse: COMPLETED ThreadTimeStep at time: ',NextTime!

 else:!

 NextTime = time!

 !

Assimilate observations!

!

 for x in ObFiles:!! ! ! # Search file list..!

 if verbose:!

 print 'RUN_DARTosse: Name of observation file ',x!

 if x.find(str(ObTimeSec[TimeIndex])) != -1:!

 utc = ObTime[TimeIndex]!

 strin = "%s %s %s %s %s %s %s '%s'" %

(ObFormat[TimeIndex],utc[0],utc[1],utc[2],utc[3],utc[4],utc[5],x)!

 if verbose:!

 print!

 print 'RUN_DARTosse: command written to enkf obfile list ', strin!

 ofile = open(ObFileList, 'w+')!

 ofile.write(strin)!

 ofile.close()!

 cmd = 'enkf ' + str(NextTime) + ' ' + ObFileList + ' ' + ObTableFile + ' ' +

TrueState[TimeIndex] + ' ' + str(nxyz3dtruth)!

 print !

 print 'RUN_DARTosse: EnKF being called: ',cmd!

 print !

 if run_enkf:!

 os.system(cmd)!

 print 'RUN_DARTosse: COMPLETED ENKF for data file ',x,' at time: ',NextTime!

 print !

 print 'RUN_DARTosse: COMPLETED ENKF for all data files at time ',NextTime!

 !

Increment time and observation file time indices!

!

 time = NextTime ! ! ! ! # Set time to NextTime!

!

 TimeIndex = TimeIndex + 1!! # Increment TimeIndex (for ObFiles) by 1!

 print "RUN_DARTosse: Integration has been completed through ",time!

#END TIME INTEGRATE LOOP

Model object
method for

setting model
parameters

Model object
method for

running fcst models
simultaneously

(parallel)

All this string
processing would

really, really hurt in
Fortran. Don’t try

this at home....

NOAA/National Severe Storms Lab

Comments
Python manages all of the information to make these
program interact. In this model, Fortran codes are still
separate and act like Unix shell commands executed with
in the Python program.

Is all this doable in Fortran: Yes, very painfully

How about CSH? Yes, perhaps as painfully

Perl? Ruby? Sure - because at this point the Fortran
algorithms and Python code are separated.

Can we integrate things further (and do we want to?)

NOAA/National Severe Storms Lab

Should we go further....?
F2PY can wed F77/F95 code to Python such that Fortran
modules can be loaded into the interpreter.

Advantages:

Removes the need for passing information through files
which is messy

Can use python to store metadata about Fortran variables,
again doable but awkward in F95

Python has excellent File I/O modules - reading and
writing data to netCDF/HDF4/5 in Python is far simpler in
Python than Fortran

OOP programming in Python is far easier than OOP
programing in F95 (I have tried...)

NOAA/National Severe Storms Lab

Should we go further....?
Disadvantages:

Integrating Python/Fortran generates code that is much
more machine dependent code (F2PY works on 32/64 bit,
but there are a few issues)

Data needs to be stored in row-major order in Python -
doable. Differences between Numarray/Numpy/Numeric
can introduce conversion overhead

Python 2.5 is 64 bit, but not all needed OSS code is 64
bit friendly. Our EnKF application needs large memory
(> 4 GB). Have not checked on this since Python 2.3

Our experience: If problem is I/O intensive and big
memory, better off leveraging existing code and “gluing” the
various Fortran applications together with Python.

NOAA/National Severe Storms Lab

Final Comments
“PyEnCOMMAS” application developed and run on Mac (Intel
& PPC), Intel Linux, and 64P SGI Altix.

6 member research “group”: NSSL, NCAR, Univ of IL.

most knew only F90/CSH.

Learning Python was relatively easy

OOP concepts somewhat harder

All believe that effort was worthwhile - management of
EnKF application is much easier task

Relatively few cross-platform issues (mostly plotting crap)

Copy of this talk and other Python info available at:

http://www.nssl.noaa.gov/users/lwicker/public_html/

NOAA/National Severe Storms Lab

Suggested Reading
Python: A Visual Quickstart Guide by Chris Fehley
- my “bible” for Python programing, mostly 300+
pages of examples of stuff you forget.

Python Scripting for Computational Science, Hans
P. Langtengen - a great book for seeing all the
things one can do using Python in computation.

Joel on Software by Joel Spolsky - a must for
anyone who writes/manages large amounts of
code - plus its very funny and gives an inside
look at working at Microserf and other companies
during the internet boom of the late-1990’s

